
ICT365

Software Development Frameworks

Dr Afaq Shah

ASP.net

Topics

ASP.NET:

a set of classes and tools for
creating web applications.

Web Services

are internet based applications
that use XML messages
(SOAP messages) for
communications.

ASP.net

Building Distributed Applications

ASP.NET Architecture

ASP.NET Page Composition

ASP.NET Page Lifecycle

Web Technologies

• HTTP / HTTPS

• Client-side:

HTML / XHTML (Extensible HyperText Markup Language)

JavaScript / VBScript (client-side scripting)

Applets / ActiveX controls

• Server-side:

PHP

Python

JSP (Java Server Pages)

ASP (Active Server Pages)

ASP.NET (next generation of ASP)

ASP.NET Overview and Features

 ASP.NET provides services to allow the creation,
deployment, and execution of
Web Applications and Web Services

 Web Applications are built using Web Forms

 Web Forms are designed to make building
web-based applications as easy as building
Visual Basic applications

 Built on .NET Framework: any .NET
programming language can be used (C#, Visual
Basic)

 Complete object model

 Separation of code and UI

 Session management

 Caching, Debugging, Extensibility

ASP.NET Architecture

Common Language Specification

Common Language Runtime

VB C++ C#

ASP.NET: Web Services

and Web Forms

JScript …

Windows

Forms

Base Classes

ADO.NET: Data and XML

V
is

u
a
l S

tu
d
io

.N
E

T

Programming Model
ASP.NET Object Model

• Controls are objects, available in
server-side code

Derived from System.Web.UI.Control

• The web page is an object too

Derived from System.Web.UI.Page

• User code executes on the web server in
page or control event handlers

Distributed Applications

Divide Responsibility Accordingly

CSS

HTML

ASP

Code Behind

Business Logic

Themes

MasterPage

Web.config

Database

ASP.NET Architecture

HTTP Request

HTTP Response

CLR

DATABASE
ASP.NET

.NET Framework

HTTP Request In HTTP Response Out

.ASPX .HTML

Internet Information

Server

Web Server
Client

Page Composition Parts

HTMLASPX

C#, VB,

C++, or

.NET

language

(Code behind)

+ =

Web Page
CSSHTML JavaScript+ + =

Server Side:

Client Side:

ASP.Net Controls

• Button Controls

• Text Boxes and Labels

• Check Boxes and Radio Buttons

• List Controls

WebTime.aspx Example
Creating an ASP.NET Web
Application using Visual Studio

Step 1: Creating the Web Application Project

• Select File > New Web Site... and choose ASP.NET Empty
Web Site in the Templates pane.

• Select File System from the drop-down list closest to
Location.

• Set the Language to Visual C#, and click OK.

WebTime.aspx Example

• Add an ASPX file (i.e., Web Form), default named
Default.aspx is created for each new project.

• Visual Web Developer creates a code-behind file named
Default.aspx.cs.

• The View Designer button opens the Web Form in Design
mode.

• The Copy Web Site button allows you to copy the project’s
files to another location, such as a remote web server.

• Finally, the ASP.NET Configuration button takes you
to the Web Site Administration Tool.

• Look at Toolbox displayed in the IDE when the project
loads.

Standard and Data list of web controls.

Editing the WebTime.aspx

• When the project loads for the first time, the Web
Forms Designer displays the autogenerated ASPX file in
Source mode.

• Design mode indicates the XHTML element where the
cursor is currently located.

• You can also view both the markup and the web-page
design at the same time by using Split mode

• Right click the ASPX file in the Solution Explorer
and select View Code to open the code-behind file.

WebTime.aspx Example

• Let’s create our first ASP.NET page using Visual Studio

1. Modify title of the page

2. Add a heading <h2>

3. Look at the page in Design and Split modes

4. Add a Label control from the Toolbox

5. Change ID of the Label control

6. Change some physical properties of the Label control

7. Go to WebTime.aspx.cs file and add Page_Init function
to set Text property of the Label control

WebTime.aspx Example

Changing the Title of the Page

• We change the page’s title from the default Untitled Page to “A
Simple Web Form Example”.

• Open the ASPX file in Source mode and modify the text between
the <title> tags.

• Alternatively, you can modify the Web Form’s Title property in the
Properties window.

• To view the Web Form’s properties, select DOCUMENT from the
drop-down list in the Properties window.

Designing the Page

• To add controls to the page, you can drag and drop them from the
Toolbox onto the Web Form in Design mode.

• Like the Web Form itself, each control is an object that has
properties, methods and events.

• You can type text directly on a Web Form at the cursor location or
insert XHTML elements using menu commands.

Renaming the WebTime.aspx

Renaming the ASPX File

 Right click the ASPX file in the Solution Explorer and select
Rename.

 Enter the new file name WebTime.aspx and press Enter. Both
the ASPX file and the code-behind file are updated.

Renaming the Class in the Code-Behind File and Updating
the ASPX File

 Visual Studio’s refactoring tool, which automatically updates
the existing references to this class in the rest of the project

to reflect this change.

 Right click the class name in the partial class’s declaration and
select Refactor > Rename… to open the Rename dialog.

19

 1 <%-- WebTime.aspx --%>

 2 <%-- A page that displays the current time in a Label. --%>

 3 <%@ Page Language="C#" AutoEventWireup="true" CodeFile="WebTime.aspx.cs"

 4 Inherits="WebTime" EnableSessionState="False" %>

 5

 6 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

 7 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

 8

 9 <html xmlns="http://www.w3.org/1999/xhtml">

10 <head runat="server">

11 <title>A Simple Web Form Example</title>

12 </head>

13 <body>

14 <form id="form1" runat="server">

15 <div>

16 <h2>Current time on the web server:</h2>

Visual Studio generates the markup
shown when you create the GUI.

ASP.NET comments

begin with <%-- and

terminate with --%>,

and can span multiple

lines.

The Page directive

specifies information

needed by ASP.NET

to process this file.

ASPX file that displays the web server’s time.

The document type

declaration, which specifies

the document element name

and the PUBLIC URI for the

DTD that defines the

XHTML vocabulary.

XHTML documents

have the root element

html and markup

information about the

document in the head
element.

The body contains

the main content

that the browser

displays.

The form that contains our

XHTML text and controls is set

to execute on the server, which

generates equivalent XHTML.

WebTime.aspx Example

Examining an ASPX File

• The Page directive’s Language attribute specifies the
code-behind file’s language.

• The CodeFile attribute specifies the code-behind filename.

• When AutoEventWireup is true, ASP.NET automatically
treats a method of name Page_eventName as an event
handler.

• When AutoEventWireup is set to false, you specify event
handlers using attributes in the Page directive just as you
would any other web control.

• The Inherits attribute (line 4) specifies the class in the
code-behind file from which this ASP.NET class inherits.

WebTime.aspx Example

• The document type declaration, which specifies the
document element name and the PUBLIC URI for the DTD
that defines the XHTML vocabulary.

• XHTML documents have the root element html and markup
information about the document in the head element.

• Setting the runat attribute to "server" indicates that
ASP.NET processes the element and its nested elements and
generates the corresponding XHTML.

• The body contains the main content that the browser
displays.

• The form that contains our XHTML text and controls is set to
execute on the server, which generates equivalent XHTML.

17 <p>

18 <asp:Label ID="timeLabel" runat="server" BackColor="Black"

19 Font-Size="XX-Large" ForeColor="Yellow"

20 EnableViewState="False"></asp:Label>

21 </p>

22 </div>

23 </form>

24 </body>

25 </html>

ASPX file that displays the web server’s time. (Part 2 of 2.)

Markup for a

label web

control.

The asp: tag prefix

indicates that the

label is an ASP.NET

web control, not an

XHTML element.

• In an ASPX file a directive is delimited by <%@ and %>.

Visual Studio generates the markup
(Contd…)

WebTime.aspx Example

• The ID attribute assigns a name to a control,
used as an identifier in the code-behind file.

• The asp: tag prefix indicates that the label is an
ASP.NET web control, not an XHTML element.

• Each web control maps to a corresponding XHTML
element or group of elements.

WebTime.aspx Example

• The asp:Label control is written as an XHTML span
element.

• A span element contains text with formatting styles.

• This control is processed on the server so that the
server can translate the control into XHTML.

• If this is not supported, the asp:Label element is
written as text to the client.

• The Page_Init method handles the page’s Init event,
which indicates that the page is ready to be initialized.

WebTime.aspx Example Run

 1 // WebTime.aspx.cs

 2 // Code-behind file for a page that displays the current time.

 3 using System;

 4

 5 public partial class WebTime : System.Web.UI.Page

 6 {

 7 // initializes the contents of the page

 8 protected void Page_Init(object sender, EventArgs e)

 9 {

10 // display the server's current time in timeLabel

11 timeLabel.Text = DateTime.Now.ToString("hh:mm:ss");

12 } // end method Page_Init

13 } // end class WebTime

The code-behind file
(WebTime.aspx.cs)

Code-behind file for a page that displays
the web server’s time. (Part 1 of 2.)

The Page_Init
method handles the

page’s Init event,

which indicates that

the page is ready to

be initialized.

Retrieve the current

time and formats it

as hh:mm:ss.

WebTime.aspx Example
Relationship Between an ASPX File
and a Code Behind File

• The code-behind file inherits from Page, which defines the
general functionality of a web page.

• The code-behind file contains a partial class.

• ASP.NET generates another partial class that defines the
remainder of that class, based on the markup in the ASPX
file.

• The first time the web page is requested, this class is
compiled, and an instance is created.

• This instance represents our page—it creates the XHTML that
is sent to the client.

• Once an instance of the web page has been created, multiple
clients can use it to access the page—no recompilation is
necessary.

Example: ASP.Net Page Layout

<!-- directives -->
<% @Page Language="C#" %>

<!-- code section -->
<script runat="server">

private void convertoupper(object sender, EventArgs e)
{

string str = mytext.Value;
changed_text.InnerHtml = str.ToUpper();

}
</script>

<!-- Layout -->
<html>

<head>
<title> Change to Upper Case </title>

</head>

<body>
<h3> Conversion to Upper Case </h3>

<form runat="server">
<input runat="server" id="mytext" type="text" />
<input runat="server" id="button1" type="submit" value="Enter..."

OnServerClick="convertoupper"/>

<hr />
<h3> Results: </h3>

</form>

</body>

</html>

Example

Example: Visual Studio IDE

protected void Button1_Click(object sender, EventArgs e)
{

string buf = TextBox1.Text;
changed_text.InnerHtml = buf.ToUpper();

}

Example: Visual Studio IDE

<%@ Page Language="C#" AutoEventWireup="true" CodeBehind="Default.aspx.cs"
Inherits="firstexample._Default" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-
transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" >

<head runat="server">
<title>

Untitled Page
</title>

</head>

<body>

<form id="form1" runat="server">
<div>

<asp:TextBox ID="TextBox1" runat="server" style="width:224px">
</asp:TextBox>

<asp:Button ID="Button1" runat="server" Text="Enter..." style="width:85px" onclick="Button1_Click" />
<hr />

<h3> Results: </h3>

</div>
</form>

</body>

</html>

Example: Visual Studio IDE

Event Handling

• GUIs are event driven.

• When the user interacts with a GUI component, the
event drives the program to perform a task.

• A method that performs a task in response to an event
is called an event handler.

• Create another ASP.NET page using Visual Studio

1. Add a Button and a Label control

2. To create this click event handler, double click the Button on the Form.

3. The following empty event handler is declared:

4. Set the Text property of the Label control with the current time in this
function.

protected void Button1_Click(object sender,

EventArgs e)

{

}

Event Handling Example (HelloWorld)

Event Handling Example (HelloWorld)

• To add an event handler, alternatively in markup (aspx) file:

1. Add a onclick="BClick" property to the Button control.

2. Add a function BClick to the page class in the code behind.

<%-- Hello World page that also displays the current time. --%>

<%@ Page Language="C#" AutoEventWireup="true"

CodeFile="HelloWorld.aspx.cs" Inherits="HelloWorldPage" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head runat="server">

<title>Hello World Web Form</title>

</head>

<body>

<form id="form1" runat="server">

<asp:Button ID="buttonClick" runat="server" Font-Size="Medium"

Width="102px“ Text="Click Me" onclick="BClick" />

<asp:Label ID="labelHello" runat="server"></asp:Label>

</form>

</body> </html>

ASP.NET comments begin with <%-- and

terminate with --%>, and can span multiple lines.

The Page directive

specifies information

needed by ASP.NET

to process this file.

XHTML documents have the

root element html and markup

information about the document

in the head element.

The body contains the main content

that the browser displays.

The form that contains our XHTML text

and controls is set to execute on the server,

which generates equivalent XHTML.

Markup for label &

button web controls.

The asp: tag prefix indicates that the label is an

ASP.NET web control, not an XHTML element.

ASPX Code Behind File

public partial class HelloWorldPage : System.Web.UI.Page

{

protected void BClick(object sender, EventArgs e)

{

labelHello.Text = "Hello World! Time is " +

DateTime.Now;

}

}

Event Handling

• By convention, C# names the event-handler method as
objectName_eventName (e.g., Button1_Click).

• Each event handler receives two parameters when it is

called:

An object reference named sender—a reference to the object
that generated the event.

A reference to an object of type EventArgs, which contains
additional information about the event.

Other Ways to Create Event
Handlers

• Typically, controls can generate many different types of events.

• Clicking the Events icon (the lightning-bolt icon) in the Properties
window, displays all the events for the selected control.

40

Locating Event Information

• To learn about the events raised by a control, select Help >
Index.

• In the window, select Web Development (.NET) in the
Filtered by drop-down list and enter the name of the control’s
class in the Index window.

Reading/ reference
http://prospero.murdoch.edu.au/record=b2962782~S1

Chapter 14. Building Web
Applications Using ASP.NET
Core MVC

http://prospero.murdoch.edu.au/record=b2962782~S1

Reading/ reference
http://prospero.murdoch.edu.au/record=b2962780~S1

Chapter: Introducing ASP.NET
Web Forms

Chapter: ASP.NET Web
Controls, Master Pages, and
Themes

Chapter: ASP.NET State
Management Techniques

Chapter: ASP.NET MVC and
Web API

http://prospero.murdoch.edu.au/record=b2962780~S1

Reading/ reference
http://prospero.murdoch.edu.au/record=b2962781~S1

Chapter: MAKING APPS
RESPONSIVE WITH
ASYNCHRONOUS
PROGRAMMING

Chapter: COMPOSING EVENT-
BASED PROGRAMS USING
REACTIVE EXTENSIONS

Chapter: EXPLORING .NET
CORE 1.1

Chapter: ASP.NET CORE ON
THE MVC FRAMEWORK

http://prospero.murdoch.edu.au/record=b2962781~S1

MSDN etc

http://msdn.microsoft.com/en-
us/aa336522.aspx

ASP.NET

http://www.asp.net/

AspFree community

http://www.aspfree.com/

devx.com/dotnet/

http://www.devx.com/dotnet/

http://msdn.microsoft.com/en-us/aa336522.aspx
http://www.asp.net/
http://www.aspfree.com/
http://www.devx.com/dotnet/

